Advanced Cutting Edge Research Seminar

Dialogue Management using Reinforcement Learning

Assistant Professor
Koichiro Yoshino
Course works

1. Basis of spoken dialogue systems
 – Type and modules of spoken dialogue systems

2. Deep learning for spoken dialogue systems
 – Basis of deep learning (deep neural networks)
 – Recent approaches of deep learning for spoken dialogue systems

3. Dialogue management using reinforcement learning
 – Basis of reinforcement learning
 – Statistical dialogue management using intention dependency graph

4. Dialogue management using deep reinforcement learning
 – Implementation of deep Q-network in dialogue management
Problem of Q-learning

Initialize every pair of $Q(s, a)$
set $\varepsilon (0<\varepsilon<1)$
while update $< \text{threshold}$

observe s^t
if rand() $< \varepsilon$
the system takes the action a^t according to $\max_{a^t} Q(s^t, a^t)$
else
randomly select a^t

decide s^{t+1}
receive reward $R(s^t, a^t, s^{t+1})$
update $Q(s^t, a^t)$

$(1 - \alpha)Q(s^t, a^t) + \alpha \left(R(s^t, a^t, s^{t+1}) + \gamma \max_{a^{t+1}} Q(s^{t+1}, a^{t+1}) \right)$
end

How do we decide s?
How to define rewards?
How do we apply for b?
User simulator

- **User simulator decides** s **at each turn**
 - Very simple model works on $P(s^{t+1}|s^t, a^t)$
 - But we can calculate actual $Q^*(s,a)$ without Q-learning, if we know $P(s^{t+1}|s^t, a^t)$

- **There are several approaches as other modules**
 - **Heuristics**
 - Agenda-based: The simulator assumes goal and agenda
 - IDG system: The simulator assumes goal and transitions to goals
 - **Data driven approaches:**
 - N-gram based utterance generator,
 - neural network based
Seq2seq model for user simulation

- Train the action sequence of the user given a sequence of context
 - It just simulate actions (intentions) of the user
 - Simple encoder-decoder model is used

Learning convergence

- **Q-learning requires many trials to converge**
 - Even if only train on small number of states and actions
 - For 7 states and 3 actions, it requires 100,000 steps
- **Good user simulator is necessary**
 - Required number of data for simulator is smaller than Q-learning
 - If we know the behavior of the user, it is possible to build the model with less training data
Reward definition

• Task completion
 – This is the most simple and easy to understand
 – E.g. system receives +10 rewards in task successes, -10 penalties in task fails and -1 penalty on each turn

• User satisfaction
 – Regression result of the user satisfaction
 – It works comparably to the task completion

• Inverse reinforcement learning
 – Calculate the reward from the expert data (dialogue data of wizard of Oz; dialogue system acted by human)

Reward definition and policy

- Relation between rewards and trained policy
 - Higher penalty increase the number of “confirmation” (conservative)
 - Q-learning trained more progressive policy if the penalty is small

-10 for mistake • -50 for mistake
 - 1 do
 - 2 do
 - 3 goal
 - 4 do
 - 5 goal
 - 6 do
 - 7 goal

Relation between rewards and trained policy
Higher penalty increase the number of “confirmation” (conservative)
Q-learning trained more progressive policy if the penalty is small

-10 for mistake • -50 for mistake
 - 1 do
 - 2 do
 - 3 goal
 - 4 do
 - 5 goal
 - 6 do
 - 7 goal
Other remaining problems

• How do we decide belief point to be sampled as b?
 – It is hard to Update any $Q(b, a)$, because b is not a point as s
 • It will be hyper plain
• Grid-based value iteration
 – Decide belief points with grid
• Point-based value iteration
 – Decide belief points from sampling of data
• Regression (Q-network)
 – If we can develop a regression to calculate $Q(b, a)$, it can calculate $Q(b', a)$ (if the model is successfully trained)
States are defined from dialogue frames, and simple actions are set up
 - Of course, you can develop much more complicated intention graph

User simulator can be developed under very simple assumption
 - Page 28

Belief update can be modeled with prior that can be acquired from the domain knowledge
 - Supervised learning requires large scale training data
 - $h^t = \tanh(W_{Xh}X^t + W_{hh}h^{t-1} + c_h)$
 - $b^t = \text{softmax}(W_{hb}h^t + c_b)$

Reward functions are task completion

Problem of belief point sampling will be solved by Q-network
If we use simple assumption in IDG...

- The user firstly decide their goal g
 - The goal is 3 in the example

- The user says the first utterance as any node between the goal node and the root node
 - It will be 1, 2 or 3 in the example
 - $P(s'|g,a)$: user simulator

- If the system confirms with the user, the user repeats the previous utterance (node) again
 - Required if the system assumes belief (=confidence of each state)
If we use simple assumption in IDG...

• If we know the current state (node), we also can estimate possible goals, which are children of the current state
 – \(P(g|s) \): goal model

• State transition can be approximated with the goal model and the user simulator
 – \(P(s|s, a) = \sum_g P(s|g, s, a)P(g|s) \)
 – \(\approx \sum_g P(s|g, a)P(g|s) \)
 – The benefit of this model is that we start from the zero-resource
Let’s see the source code...

https://github.com/ahclab/Q-learning-DM
Future directions of spoken dialogue systems

- Controllable dialogue systems
 - Especially for neural conversation models

Future directions of spoken dialogue systems

- **Multi-modal, affective computing**
 - Considering non-verbal user states such as emotion will improve the experience of conversation for the user
 - Multi-modal information is important to observe such states
 - Systems are also required to use their own emotional, friendly, kind expressions to user

Eliciting Positive Emotion through Affect-Sensitive Dialogue Response Generation: A Neural Network Approach, Lubis et al., In Proc AAAI2018
Future directions of spoken dialogue systems

- **Interaction with real world**
 - Grounding
 - Relations between real objects and concepts
 - Knowledge acquisition from conversation

 - How to learn from the conversation?

- **Connections to IoT**
 - Smart speaker
 - But we need to take care about malicious users: Microsoft Tay

Lexical Acquisition through Implicit Confirmations over Multiple Dialogues, Ono et al., In Proc SIGDIAL2017
Future directions of spoken dialogue systems

• Many new tasks will appear
 – Conventional task-oriented tasks → more complicated multi domain task that requires knowledges of several tasks and domains
 – Chat-oriented system → chatting system that can keep what they talk with the user by dynamically changing the topic or behaviors to keep the user attention

• New learning theory
 – Deep reinforcement learning: actor-critic
 – Bayesian deep reinforcement learning: gives some priors to reduce the number of learning data
Choose one from following works:

1. Read one original paper that is introduced in 4 classes and submit A4 x 2 pages summarization.
2. Try the source code on Github, work on your original domain and submit the source code and summary.

Deadline: Feb 13 23:59JST

- Email: koichiro@is.naist.jp
- Subject: ACE-report-[your student number]-[your name]
- Current Q-learning code may contain some bugs, I’ll try to fix that by the end of this Friday...