Spoken Language Processing Applications

Koichiro Yoshino http://www.pomdp.net

Nara Institute of Science and Technology Augmented Human Communication Laboratory

2016/5/12

SD study

Spoken language processing applications

- What can we do with Speech?
 - Phone call
 - Control car-navi
- Everyone knows we can use speech to control some devices
 - Really uses speech?

- What is realized by current SLP systems?
 - Real SLP applications
 - Understand the performance of current speech recognition to build a SLP system

An architecture of SLP application

AHC Lab. 2016/5/12

SD study

ASR and Deep Neural Network (DNN)

System of speech recognition

State-of-the-art ASR system

Current systems

- Large-scale speech recognition on cloud cluster machines
 - Open-domain < Specified-domain
- ASR with closed-talk microphone
 - Minutes of national congress, applications in smartphone

Future works

- Stand-alone ASR on mobile devices
 - Cloud: Not real time
- Distant speech recognition
 - Beam forming, Microphone array processing

How do we design a SLP system?

Assume an inputted speech

- System reads the speaking style of users
- Clarify the purpose of dialogue system

We must not assume 100% ASR accuracy

- Post-process of ASR must assume ASR error
- Adaptation of ASR system (AM, LM)

Compare with competing devices

- Text input, QR, touch panel
- More efficient input method than speech
- Disadvantage of other input methods

Task-oriented dialogue systems

Goal, Task, and Domain knowledge

- Goal
 - Purpose of dialogue shared between attendees (user and system)
 - Bus navigation: Departure time of the next bus to Kyoto, ...
 - QA system: Height of Mt. Fuji, Entrance fee of Kinkakuji-temple, ...
- Task
 - Defined to reach a goal
 - Task-flow, question patterns, ...
- Domain knowledge
 - Essential knowledges to realize the defined task
 - Names of bus stops, ...

Kyoto bus navigation system

- Flexible guidance generation using user model in spoken dialogue systems. Komatani et al. In Proc. ACL, pp.256—263, 2003.
- Real service of Kyoto city bus
 - IVR automatically responds to users on phone call
- Input From, To, and Bus number
 - System responds when the next bus will arrive

- Management: automatically generated VoiceXML
- vocabulary: bus stops: 652, place, building: 756

SLU considers ASR error

- User generates utterance from hidden intention
- ASR transcribes the speech to texts
- Spoken language understanding from text to intention

$$P(o|s) = \sum_{h} P(o, h|s) \approx \sum_{h} \frac{P(o|h)P(h|u)}{\frac{SLU}{P(o|h)P(h|u)}}$$

Dependence to dialogue histories

•
$$b' = P(s^{t+1}|o^{1:t+1}) \propto P(o'|s'_j) \sum_{s_i} P(s'_j|s_i, \widehat{a_k}) b^t$$

Observation

Transition Current belief

- $-s \in I_s$ user state
 - system action
 - observed state

 $-a \in K$

 $- o \in I_s$

 $-b_s = P(s|o^{1:t})$ belief of user states (stochastic variable)

Input vector (user utterance)

 Traditional state transition model \rightarrow Recurrent Neural Network

Output (belief)

RNN based SLU

 Word-Based Dialog State Tracking with Recurrent Neural Networks. Henderson et al., In Proc. SIGDIAL, pp, 292-300,

SD study

Recurrent Neural Network → Long Short Term Memory Neural Network

- LSTM can keep more distant information than RNN
- Dialogue State Tracking using Long Short Term Memory Neural Networks. Yoshino et al., In Proc. IWSDS, 2016.
- Context Sensitive Spoken Language Understanding using Role Dependent LSTM layers. Hori et al., In Proc. NIPS-WS, 2015.
- Incremental LSTM-based Dialog State Tracker. Zuka et al., In Proc. ASRU, 2015.

LSTM-based SLU

LSTM-based SLU

LSTM-based SLU

Action selection given SLU results

• *s^t*: user action in turn *t*

- actions: Select \$FROM, Select \$TO_GO ...
- histories: \$FROM=神保町駅, \$LINE=半蔵門線

• *a^t*: system action in turn *t*

- next actions: Ask \$TO_GO, Ask \$LINE, Confirm ...
- User action can be represented with $P(s^{t+1}|s^t, a^t)$ Markov property

– Apply reinforcement learning

Dialogue management with RL

- $s \in I_s$ user state
- $a \in K$ system action
- *R*(*s*, *a*) reward gives reward and penalty
- $\pi(s) = a$ policy learn in RL • ε learning rate
 - ε learning rate
 γ discount factor
- Select a policy function that maximize the value function $V^{\pi}(s) = \sum_{k=0}^{\infty} \gamma^k R(s^{t+k}, a^{t+k})$
- Q-value is used in Q-learning to get the optimal policy

$$- Q(s^{t}, a^{t})$$

$$\underset{update}{\leftarrow} (1 - \varepsilon)Q(s^{t}, a^{t}) + \varepsilon \left(R(s^{t}, a^{t}) + \gamma \max_{a^{t+1}} Q(s^{t+1}, a^{t+1})\right)$$

Action selection for ambiguous SLU results

- ASR result must include errors
- SLU results are given as stochastic variable
 - Application decides an action given a variable
 - Not **s**, given **b**_s
- Decision making with Partially Observable Markov Decision Process (POMDP)
- Learn the optimal policy $\pi^*(b) = a$ in partially observable situation
 - One of the major problem of SDS
 - Dialogue data for training is limited

POMDP based DM

Belief update of POMDP

•
$$b' = P(s^{t+1}|o^{1:t+1}) \propto P(o'|s'_j) \sum_{s_i} P(s'_j|s_i, \widehat{a_k}) b^t$$

observation

Update belief

- Update belief is sent to the policy to decide the next action

transition

current belief

(Typical) POMDP learning

SD study

2016/5/12

AHC Lab.

$MDP \rightarrow POMDP$

Problems when we apply POMDP to SDS

- Not enough data to learn optimal π^{*}()
 Efficient training method is required
- 1. Hybrid of rule and POMDP
- 2. Efficient sampling
- 3. Efficient calculation of Q-function

Hybrid of rule and POMDP

- The hidden information state model: a practical framework for POMDP-based spoken dialogue management Young et al., Computer Speech & Language, Vol.24, No.2, pp.150-174, 2010.
- Statistical dialogue management using intention dependency graph. Yoshino et al., In Proc. IJCNLP, pp.962-966, 2013.
- Handcrafted rules are used as restrictions of search space

Hidden Information State Model

SD study

Hidden Information State Model

SD study

NAIST

AHC Lab.

2016/5/12

Intention Dependency Graph

- Define state transition probabilities in pre-defined task structures
 - 1. ROOT[] (=no specified request)
 - 2. PLAY_MUSIC[artist=null, album=null]
 - 3. CONTROL_VOLUME[value=null]
 - 4. PLAY_MUSIC[artist=\$artist_name, album=null]
 - 5. PLAY_MUSIC[artist=null, album=\$album_name]
 - 6. CONTROL_VOLUME[value=\$up_or_down]

7. PLAY_MUSIC[artist=\$artist_name, album=\$album_name]

Benefits to use rules and task structures

• To launch a new system

- A rule-base system is used to collect data
- The rule-based manager can be shifted to statistical one
- Weight unobserved states, sequences
 - It is impossible to cover all possible situations by training data (dialogue data)
- Adaptation for unobserved states, new domains

Efficient sampling

Grid-based value iteration is not efficient

- GBVI: select belief points with equable grids
- PBVI: bias belief points according to the already observed states
 - s_1 and s_3 are confusable states

Efficient calculation of Q-function

- Learning of POMDP = maximization of Q(b, a)
 Define Q calculation for all possible pairs of b and a
- Calculate a similarity of (b_i, a_i) and (b_k, a_k) to calculate new $Q(b_k, a_k)$ with known $Q(b_i, a_i)$
 - Define a kernel function to calculate the similarity
- Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems. Thomson et al., Computer Speech & Language, vol. 24, no. 4, pp. 562–588, 2010.

Question answering systems

- There are several shared tasks in 2000s
 NTCIR etc...
- IBM Watson
 - Collect massive good question-answer pairs
 - Won in Jeopardy! TV show
- Several systems that use inference are research in recent
- Major spoken dialogue systems are consist of
 - task oriented system for typical tasks
 - question answering system
 - search engine of Web

Important points to construct a task oriented system

- Good task design: make it clear the user's intention
 - Users often encounter a situation that they don't know what to say
 - To be a good first-food clerk
- Necessary and sufficient task structure
 - Roughly does not achieve anything
 - Detailed structure disturb a learning of management
- Fall-back of system
 - E.g. call Web search when anything does not hit

Important points to construct a non-task oriented system

- Conversational System for Information Navigation based on POMDP with User Focus Tracking. Yoshino et al., Computer Speech & Language, Vol.34, Issue.1, pp.275--291, 2015.
- Good task design: design that works well even if the user intention is ambiguous
 - Proactive contact form the system to clarify the user's intention
 - Design of information extraction that works for ambiguous queries
- Classify user intentions to several classes
 - On a limited situation
- Introduce a new observation state that matches to the system concept
 - Information navigation: user focus, topic of the dialogue
 - Emotional system: emotion state

Information navigation task

- Navigate contents written in knowledge source (doc)
 - News texts updated day-by-day
 - Limit a domain (baseball, football, economics, etc...)
 - Use automatically extracted domain knowledge
- The system takes a role of speaker
 - Clarify what the listener want to know
 - Domain knowledge
 - User intention
 - User focus

Information navigation system

News Navigation System : Kyome Version 0.4.0 Concierge		
ニュース案内システム	対話ログ	
		Stop Sound
興味があれば質問!		Secretary Mode
情報案内対話の構造

States and actions in information navigation

- Dialogue management activates the appropriate dialogue module
- User state s:
 - **TP**: request to present a topic
 - **ST**: request to describe detail
 - **QA**: question
 - **GR**: greeting
 - *II*: meaningless input due to ASR errors
 - **NR**: silence

system action *a*:

- **TP**: topic presentation
 - ST: story telling
 - **QA**: answer
 - **GR**: greeting
 - **KS**: don't do anything
 - **CO:** confirmation
 - **PP**: proactive presentation

Introducing a user focus

<u>Example 1</u>	Example 2
 Example 1 Usr: Where was Tanaka training? Sys: Tanaka practiced at the bullpen in the New York Yankees' camp on Feb. 20th. Usr: (silence) Sys: By the way, Tanaka also practiced a drop two-seam on Feb. 18. 	 Example 2 Usr: What happened? Sys: The godzilla cannon came back to the Giants' spring camp in Miyazaki. Usr: (silence) Sys: To be a ace pitcher, has Fujinami improved from the rookie year?

- System continue the dialogue if the user has a focus (=attentional point) (Example 1)
- System change a topic if the user does not have any focus (Example 2)

Extension of dialogue management

- Introduce a Boolean f = 0 or 1 (user have a focus or not)
 - $b' \propto P(o'_{s'}, o'_{f'}|s'_j, f'_m) \sum_i \sum_l P(s'_j, f'_m|s_i, f_l, \widehat{a_k}) b^t_{s_i, f_l}$
- observation

$$- P(o'_{s'}, o'_{f'}|s'_{j}, f'_{m}) \approx P(o_{s}^{t+1}|s'_{j})P(o_{f}^{t+1}|f'_{m})$$

transition

$$- P(s'_j, f'_m | s_i, f_l, \widehat{a_k}) = P(f'_m | f_l, s_i, \widehat{a_k}) P(s'_j | f'_m, f_l, s_i, \widehat{a_k})$$

policy

AHC Lab.

$$- \widehat{a} = \pi^*(b_{s,f})$$

2016/5/12

SD study

Evaluation of information navigation

• Criteria

- DST (accuracy of dialogue state tracking)
- ACT (accuracy of action selection)

Evaluation data

- 12 users, 24 dialogues, 626 utterances with real user
- Annotate s for each utterance and the appropriate action a for the utterance
- Annotator agreements
 - *s*: 0.958 (kappa=0.938)
 - *a*: 0.944 (kappa=0.915)

Evaluation of information navigation

	Rule	POMDP w.o. focus	POMDP proposed
DST	0.812	0.853	0.867
	(=508/626)	(=534/626)	(=543/626)
ACT	0.788	0.751	0.854
	(=539/684)	(=514/684)	(=584/684)

- DST is improved by introducing user focus
- ACT is improved by introducing user focus (significant)
- Proposed method proactively present a related information according to the user's interest
 - 35 proactive presentations evoked 17 more questions of users

Construction of non-task oriented systems

Clearly define the situation of dialogue
 →to know information to be observed, and system action

Classification of user intention into good granularity

- It depends on which method will you use
- Rule is still efficient in some cases
 - Statistical method is not necessary

Generation

- Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems. Wen et al., In Proc. EMNLP, 2015.
- Existing approaches of generation in dialogue systems
 - Use rules, templates
 - It is hard to generate variational responses
 - Difficult to extend other domains
 - Statistical methods
 - Solve problems of rules and templates
 - Often generate ungrammatical, meaningless sentences

- Appropriateness, naturalness, understandability, variation

• It is difficult to fulfill all of them

Generation using LSTM

End-to-end SLP

• Skip SLU and DM

- Generate response given an input utterance
- Example-based dialogue system
 - Prepare large example base consist of pairs of a user query and a system response
 - Calculate the similarities between the utterance and queries in DB
- Adaptive selection from multiple response candidates in example-based dialogue. Mizukami et al., In Proc. ASRU, 2015.
 - Quantify the value of example with user satisfaction
 - Relevance feedback to adapt to the user's preference
- End-to-end memory networks. Sukhbaatar et al., In Proc. NIPS, 2015.
 - Directly generate response with Neural Network (LSTM) given a query

Risks to use statistical method on frontend

• Statistical methods are hard to control (e.g. NN)

- Banned words, expressions
 - Microsoft AI praises Hitler
- Grammatically correct, but semantically incorrect
- Some filtering methods are proposed
 - Filtering of training data
 - Evaluation metrics for semantic correctness
- Understanding for applied method is required
 - Some methods are used as black-boxs

Open domain system

Open-domain chat-oriented system

Extend the example base to cover a variety of domains

Open-domain task-oriented system

- Policy committee for adaptation in multi-domain spoken dialogue systems. Gasic et al., In Proc. ASRU, 2015.
- The system consists of several expert systems on different domains, and committee decides that which system is the most appropriate to speak in the current situation

Other applications in SLP

- More natural, and adaptive TTS
 - TTS for dictation already works better than non-native
- Information security (for handicap people)
 SIG-AAC (IPSJ-SIG of accessibility)
- CALL system for second language learner
 - Assist listening by using ASR results as a caption
 - Assist speaking by using non-native ASR system
 - Government of China decided to develop a English CALL system as a national project
- Communication skill training with SLP
 - Developmental disorders
- Supportive system for elderly people

Future directions

- Multi-modal system
 - Gaze, gesture, etc...

Continuous dialogue

Not limited by voice activity detection (VAD)

Incremental processing

Real-time communication

Semantics

– How do we use meaning?